Data-based decision making and the role of students

SePU-konferanse Aktører i egen læring, 24-05-2022 Kim Schildkamp:

<u>k.schildkamp</u>

@SchildkampKim

1

In this presentation

Part 1: The data use process

- Start with a purpose
- Use multiple data sources

Part 2: Involving students in the use of data

 Involve students in the use of data

Part 3: The use of data in a PLC

• Use data in dialogue (in a PLC)

Part 4: Leadership

 Data use requires distributed leadership

UNIVERSITY OF TWENTE

/

Data

- Systematically collected
- Goal displacement
- New goals new data
- Qualitative and quantitative
- Not only cognition (tests), also e.g., socio-emotional, attitudes, behavior.
- Triangulation
- Student voice data

15

Sense-making

- Not straightforward or exclusively rational
- Filter data through lenses
- Experience and intuition
- Confirmation bias
- Collective engagement
- Dialogue with students
- Requires data literacy

19

Step 1: Problem definition

- Identify a current problem in the school
 - School-wide or subject-specific
- · Prove that you have a problem
 - Collect data on current situation and desired situation
 - Three cohorts/years
- Example:
 - Current situation: '45% of our students in grade 3 (N=123) is failing mathematics'
 - Desired situation: 'Next year no more than 30% of our students is failing, the year after that no more than 15%.'

37

Step 1 Problem definition examples

- Topics in the Netherlands, all in the cognitive domain:
 - Student achievement in a specific subject
 - Final examination results
 - Grade repetition
- Topics in Sweden, in the cognitive and social domain:
 - Student achievement in a specific subject
 - Stress
 - Safety
 - Classroom climate

39

datateams

Step 2: Formulating hypotheses

- Brainstorm possible causes
 - Ask colleagues for input
 - Make a list
- Choose a hypothesis
 - Based on criteria, such as: what can we influence as a school? Which hypothesis do a lot of colleagues believe to be true? What is according to the literature a possible cause?
- Formulate a hypothesis
 - Concrete
 - Measurable

Step 3: Data collection

- Available data
- Existing instruments
- Quantitative and qualitative

- Examples:
 - · Student achievement data
 - Surveys: motivation, feedback, curriculum coherence
 - Classroom observations
 - Student interviews, teacher interviews

41

datateams

Step 4: Data quality check

- Reliability and validity of the data
- Crucial step: not all available data are reliable and/or valid!
- Examples:
 - Validity problems with survey
 - Missing data
 - · Data of one year only

Step 5: Data analysis

- Qualitative and quantitative
- From simple to complex
- Extra support needed: course data analysis
- Examples:
 - Average, standard deviation
 - Percentages
 - Comparing two groups: t-test
 - · Qualitative analyses of interviews and observations

43

datateams

Step 6: Interpretation and conclusions

- Is our hypothesis rejected or confirmed?
 - Rejected: go back/ further to step 2
 - Accepted: continue with step 7

This Photo by Unknown Author is licensed under CC BY-SA

Step 6: Interpretation and conclusions

45

datateams

Step 6: Interpretation and conclusions

- 32 data teams (2012-2014), 78 hypotheses:
 - 33 hypotheses: accepted
 - 45 hypotheses: rejected
 - 13 (qualitative) research questions
 - 13 hypotheses: no conclusion due to limitations of the dataset

This Photo by Unknown Author is licensed under CC BY-SA

Step 7: Implementing measures

- Develop an action plan:
 - Smart goals
 - · Task division and deadlines
 - Means
- Monitoring progress: how, who, which data?

47

datateams

Step 7 Improvement measures examples

- Netherlands
 - · More intensive mentoring
 - Implementation of formative assessment
 - Instructional changes, such as improvement of feedback
- Sweden
 - · Improvement of data collection and data sharing
 - · Increased monitoring and follow-up of student absence
 - Improve the safety in places where students reported feeling unsafe

Step 8: Evaluation (process)

- Process evaluation
 - Are the measures implemented the way we want?
 - · Are the measures implemented by everyone?
- Example process evaluation:
 - Measure: start every lesson with a short repetition of percentages in the form of a quiz to increase mathematic achievement
 - Interview students: this is boring, start to detest percentages!
 - · Adjust measures: repeat percentages only once a week

49

datateams

Step 8: Evaluation (effect)

- Effect evaluation:
 - Is the problem solved?
 - Did we reach our goal as stated in step 1?
- Example effect evaluation:
 - Did our measure(s) results in increased mathematics achievement?

is Photo by Unknown Author icensed under CC BY-SA

Data team functioning and effects

- · Difficult to formulate a measurable hypothesis
- · Several rounds of hypotheses: First hypotheses often wrong
- However, this is necessary: Need to create trust; practice with the eight-step procedure; learning starts when you make mistakes; shows the importance of data
- From external to internal attribution
- · Improved data literacy and student achievement
- Collaboration and dialogue crucial

51

Vision	Support	Stimulation	Networking	Climate
Communicate	Time	Be part of data team	Broker knowledge	Data use for improvement
Norms and structure	Structures for collaboration	Distribute leadership	Use network to create commitment	Trust, safety, and respect
Stainability	Emotional support	Role model, engage in data discussions	Connect data team to wider community and vise versa	Stimulate collaboration
Prioritize	Coaching and feedback	Encourage teachers to challenge beliefs		Equal collaboration
		Balance steering and autonomy		Avoid shaming and blaming

Summarizing

Five messages

- 1. Start with a purpose
- 2. Use multiple data sources
- 3. Involve students in the use of data
- 4. Use data in dialogue (in a PLC)
- 5. Data use requires distributed leadership

UNIVERSITY OF TWENTE.

